Skip to content

Latest commit

 

History

History
155 lines (128 loc) · 3.47 KB

1.7.md

File metadata and controls

155 lines (128 loc) · 3.47 KB

Lecture Notes on Econometrics

by Qiang Gao, updated at May 17, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 7 Application: Returns to Scale in Electricity Supply

...

How to derive the cost function (1.7.2)

Assume the firms are engaged in cost minimization,

$$ \begin{gather} \min \quad p_{i1} x_{i1} + p_{i2} x_{i2} + p_{i3} x_{i3} \tag{1} \\ \text{s.t.} \qquad A_i x_{i1}^{\alpha_1} x_{i2}^{\alpha_2} x_{i3}^{\alpha_3} = Q_i. \tag{2} \end{gather} $$

Then the Lagrangian is

$$ \mathcal{L} ( x_{i1}, x_{i2}, x_{i3} ) = p_{i1} x_{i1} + p_{i2} x_{i2} + p_{i3} x_{i3} - \lambda ( A_i x_{i1}^{\alpha_1} x_{i2}^{\alpha_2} x_{i3}^{\alpha_3} - Q_i ), \tag{3} $$

where $$ \lambda > 0 $$ is the shadow price of the exogenous variable $$ Q_i $$.

The first-order conditions are

$$ \begin{align} \frac{ \partial \mathcal{L} ( x_{i1}, x_{i2}, x_{i3} ) } { \partial x_{i1} } = p_{i1} - \lambda \alpha_1 A_i x_{i1}^{\alpha_1 - 1} x_{i2}^{\alpha_2} x_{i3}^{\alpha_3} = 0, \tag{4} \\ \frac{ \partial \mathcal{L} ( x_{i1}, x_{i2}, x_{i3} ) } { \partial x_{i2} } = p_{i2} - \lambda \alpha_2 A_i x_{i1}^{\alpha_1} x_{i2}^{\alpha_2 - 1} x_{i3}^{\alpha_3} = 0, \tag{5} \\ \frac{ \partial \mathcal{L} ( x_{i1}, x_{i2}, x_{i3} ) } { \partial x_{i3} } = p_{i3} - \lambda \alpha_1 A_i x_{i1}^{\alpha_1} x_{i2}^{\alpha_2} x_{i3}^{\alpha_3 - 1} = 0. \tag{6} \end{align} $$

Dividing (5) over (4) to eliminate the shadow price $$ \lambda $$,

$$ \begin{gather} \frac{ p_{i2} }{ p_{i1} } = \frac{ \alpha_2 }{ \alpha_1 } \frac{ x_{i1} }{ x_{i2} }, \tag{7} \\ x_{i2} = p_{i1} p_{i2}^{-1} \alpha_1^{-1} \alpha_2 x_{i1}. \tag{8} \end{gather} $$

Similarly, dividing (6) over (4),

$$ \begin{gather} \frac{ p_{i3} }{ p_{i1} } = \frac{ \alpha_3 }{ \alpha_1 } \frac{ x_{i1} }{ x_{i3} }, \tag{9} \\ x_{i3} = p_{i1} p_{i3}^{-1} \alpha_1^{-1} \alpha_3 x_{i1}. \tag{10} \end{gather} $$

Substituting (8) and (10) into (2),

$$ A_i x_{i1}^{ \alpha_1 + \alpha_2 + \alpha_3 } p_{i1}^{ \alpha_2 + \alpha_3 } p_{i2}^{ - \alpha_2 } p_{i3}^{ - \alpha_3 } \alpha_1^{ - \alpha_2 - \alpha_3} \alpha_2^{ \alpha_2 } \alpha_3^{ \alpha_3 } = Q_i. \tag{11} $$

Using $$ r \equiv \alpha_1 + \alpha_2 + \alpha_3 $$, we solved from (11) that

$$ \begin{align} x_{i1} & = A_i^{-1/r} Q_i^{1/r} p_{i1}^{-1 + \alpha_1/r} p_{i2}^{ \alpha_2/r } p_{i3}^{ \alpha_3/r } \alpha_1^{1 - \alpha_1/r } \alpha_2^{- \alpha_2/r} \alpha_3^{- \alpha_3/r} \ & = \alpha_1 \cdot ( A_i \alpha_1^{\alpha_1} \alpha_2^{\alpha_2} \alpha_3^{\alpha^3} )^{-1/r} Q_i^{1/r} \frac{1}{ p_{i1} } p_{i1}^{ \alpha_1/r} p_{i2}^{ \alpha_2/r } p_{i3}^{ \alpha_3/r }. \tag{12} \end{align} $$

Similarly, because of the symmetry of $$x_{i1}$$, $$x_{i2}$$, and $$ x_{i3} $$, we can also solve that

$$ \begin{align} x_{i2} & = \alpha_2 \cdot ( A_i \alpha_1^{\alpha_1} \alpha_2^{\alpha_2} \alpha_3^{\alpha^3} )^{-1/r} Q_i^{1/r} \frac{1}{ p_{i2} } p_{i1}^{ \alpha_1/r} p_{i2}^{ \alpha_2/r } p_{i3}^{ \alpha_3/r }, \tag{13} \\ x_{i3} & = \alpha_3 \cdot ( A_i \alpha_1^{\alpha_1} \alpha_2^{\alpha_2} \alpha_3^{\alpha^3} )^{-1/r} Q_i^{1/r} \frac{1}{ p_{i3} } p_{i1}^{ \alpha_1/r} p_{i2}^{ \alpha_2/r } p_{i3}^{ \alpha_3/r }. \tag{14} \end{align} $$

Substituting solutions (12), (13) and (14) of the endogenous variables into the objective function (1), we get

$$ TC_i = r \cdot ( A_i \alpha_1^{ \alpha_1 } \alpha_2^{ \alpha_2 } \alpha_3^{ \alpha_3 } )^{-1/r} Q_i^{1/r} p_{i1}^{\alpha_1 / r} p_{i2}^{\alpha_2 / r} p_{i3}^{\alpha_3 / r}. \tag{1.7.2} $$


Copyright ©2017 by Qiang Gao