Skip to content

Latest commit

 

History

History
86 lines (67 loc) · 2.1 KB

1.1.3.md

File metadata and controls

86 lines (67 loc) · 2.1 KB

Solution to Review Question

by Qiang Gao, updated at Mar 13, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 1 The Classical Linear Regression Model

...

Review Question 1.1.3 (Combining linearity and strict exogeneity)

Show that Assumptions 1.1 and 1.2 imply

$$ \mathrm{E} ( y_i \mid \mathbf{X} ) = \mathbf{x}_i' \boldsymbol{\beta} \qquad \text{($i = 1, 2, \ldots, n$)} \tag{1.1.20} $$

Conversely, show that this assumption implies that there exist error terms that satisfy those two assumptions.

Solution

(1) Firstly, we prove Assumption 1.1 and 1.2 imply (1.1.20).

$$ \begin{align} \mathrm{E} ( y_i \mid \mathbf{X} ) & = \mathrm{E} ( \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i \mid \mathbf{X} ) && \text{(Assumption 1.1)} \ & = \mathrm{E} ( \mathbf{x}_i' \boldsymbol{\beta} \mid \mathbf{X} ) + \mathrm{E} ( \varepsilon_i \mid \mathbf{X} ) && \text{(linearity of conditional expectatioins)} \ & = \mathrm{E} ( \mathbf{x}_i' \boldsymbol{\beta} \mid \mathbf{X} ) && \text{(Assumption 1.2)} \& = \mathbf{x}_i' \boldsymbol{\beta} && \text{($\mathbf{x}_i$ is known conditional on $\mathbf{X}$, $\boldsymbol{\beta}$ is constant)} \end{align} $$

(2) Conversely, we prove (1.1.20) implies there exist error terms that satisfy Assumption 1.1 and 1.2.

We define the error term as

$$ \varepsilon_i = y_i - \mathbf{x}_i' \boldsymbol{\beta}, $$

then Assumption 1.1 is satisfied. To prove assumption 1.2, notice that

$$ \begin{align} \mathrm{E} (\varepsilon_i \mid \mathbf{X}) & = \mathrm{E} ( y_i - \mathbf{x}_i' \boldsymbol{\beta} \mid \mathbf{X}) && \text{(definition of $\varepsilon_i$)} \ & = \mathrm{E} ( y_i \mid \mathbf{X} ) - \mathrm{E} ( \mathbf{x}_i' \boldsymbol{\beta} \mid \mathbf{X} ) && \text{(linearity of conditional expectations)} \ & = \mathbf{x}_i' \boldsymbol{\beta} - \mathrm{E} ( \mathbf{x}_i' \boldsymbol{\beta} \mid \mathbf{X} ) && \text{(1.1.20)} \ & = \mathbf{x}_i' \boldsymbol{\beta} - \mathbf{x}_i' \boldsymbol{\beta} && \text{($\mathbf{x}_i$ is known conditional on $\mathbf{X}$, $\boldsymbol{\beta}$ is constant)} \ & = 0. \end{align} $$


Copyright ©2017 by Qiang Gao