Skip to content

Latest commit

 

History

History
190 lines (163 loc) · 3.73 KB

1.2.3.md

File metadata and controls

190 lines (163 loc) · 3.73 KB

Solution to Review Question

by Qiang Gao, updated at Mar 21, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 2 The Algebra of Least Squares

...

Review Question 1.2.3 (OLS estimator for the simple regression model)

In the simple regression model, $$ K = 2 $$ and $$ x_{i1} = 1 $$. Show that

$$ \mathbf{S}{\mathbf{x}\mathbf{x}} = \begin{bmatrix} 1 & \bar{x}2 \ \bar{x}2 & \frac{1}{n} \sum{i=1}^n x{i2}^2 \end{bmatrix}, \quad \mathbf{S}{\mathbf{x}\mathbf{y}} = \begin{bmatrix} \bar{y} \ \frac{1}{n} \sum_{i=1}^n x_{i2} y_i \end{bmatrix} $$

where

$$ \bar{y} \equiv \frac{1}{n} \sum_{i=1}^n y_i, \quad \bar{x}2 \equiv \frac{1}{n} \sum{i=1}^n x_{i2}. $$

Show that

$$ b_2 = \frac{ \frac{1}{n} \sum_{i=1}^n (x_{i2} - \bar{x}2)(y_i - \bar{y}) }{ \frac{1}{n} \sum{i=1}^n (x_{i2} - \bar{x}_2)^2 }, \quad b_1 = \bar{y} - \bar{x}_2 b_2. $$

Solution

(1)

$$ \begin{align} \mathbf{S}{\mathbf{x}\mathbf{x}} & = \frac{1}{n} \mathbf{X}' \mathbf{X} \ & = \frac{1}{n} \begin{bmatrix} 1 & \cdots & 1 \ x{12} & \cdots & x_{n2} \end{bmatrix} \begin{bmatrix} 1 & x_{12} \ \vdots & \vdots \ 1 & x_{n2} \end{bmatrix} \ & = \frac{1}{n} \begin{bmatrix} n & \sum_{i=1}^n x_{i2} \ \sum_{i=1}^n x_{i2} & \sum_{i=1}^n x_{i2}^2 \end{bmatrix} \ & = \begin{bmatrix} 1 & \bar{x}2 \ \bar{x}2 & \frac{1}{n} \sum{i=1}^n x{i2}^2 \end{bmatrix} \end{align} $$

(2)

$$ \begin{align} \mathbf{S}{\mathbf{x}\mathbf{y}} & = \frac{1}{n} \mathbf{X}' \mathbf{y} \ & = \frac{1}{n} \begin{bmatrix} 1 & \cdots & 1 \ x{12} & \cdots & x_{n2} \end{bmatrix} \begin{bmatrix} y_1 \ \vdots \ y_n \end{bmatrix} \ & = \frac{1}{n} \begin{bmatrix} \sum_{i=1}^n y_i \ \sum_{i=1}^n x_{i2} y_i \end{bmatrix} \ & = \begin{bmatrix} \bar{y} \ \frac{1}{n} \sum_{i=1}^n x_{i2} y_i \end{bmatrix} \end{align} $$

(3) To solve for $$ \mathbf{b} $$ from

$$ \mathbf{S}{\mathbf{x} \mathbf{x}} \mathbf{b} = \mathbf{S}{\mathbf{x} \mathbf{y}}, $$

perform row operations on the following augmented matrix

$$ \begin{align} \begin{bmatrix} \mathbf{S}{\mathbf{x} \mathbf{x}} \mid \mathbf{S}{\mathbf{x} \mathbf{y}} \end{bmatrix} & = \begin{bmatrix} 1 & \bar{x}2 & \bar{y} \ \bar{x}2 & \frac{1}{n} \sum{i=1}^n x{i2}^2 & \frac{1}{n} \sum_{i=1}^n x_{i2} y_i \end{bmatrix} \ & \sim \begin{bmatrix} 1 & \bar{x}2 & \bar{y} \ 0 & \frac{1}{n} \sum{i=1}^n x_{i2}^2 - \bar{x}2^2 & \frac{1}{n} \sum{i=1}^n x_{i2} y_i - \bar{x}2 \bar{y} \end{bmatrix} \ & = \begin{bmatrix} 1 & \bar{x}2 & \bar{y} \ 0 & \frac{1}{n} \sum{i=1}^n (x{i2} - \bar{x}2)^2 & \frac{1}{n} \sum{i=1}^n (x_{i2} - \bar{x}2)(y_i - \bar{y}) \end{bmatrix} \ & \sim \begin{bmatrix} 1 & \bar{x}2 & \bar{y} \ 0 & 1 & \frac{ \frac{1}{n} \sum{i=1}^n (x{i2} - \bar{x}2)(y_i - \bar{y}) } {\frac{1}{n} \sum{i=1}^n (x_{i2} - \bar{x}2)^2} \end{bmatrix} \ & \sim \begin{bmatrix} 1 & 0 & \bar{y} - \bar{x}2 \frac{ \frac{1}{n} \sum{i=1}^n (x{i2} - \bar{x}2)(y_i - \bar{y}) } {\frac{1}{n} \sum{i=1}^n (x_{i2} - \bar{x}2)^2} \ 0 & 1 & \frac{ \frac{1}{n} \sum{i=1}^n (x_{i2} - \bar{x}2)(y_i - \bar{y}) } {\frac{1}{n} \sum{i=1}^n (x_{i2} - \bar{x}_2)^2} \end{bmatrix} \ & = \begin{bmatrix} \mathbf{I} \mid \mathbf{b} \end{bmatrix}. \end{align} $$

So

$$ b_2 = \frac{ \frac{1}{n} \sum_{i=1}^n (x_{i2} - \bar{x}2)(y_i - \bar{y}) }{ \frac{1}{n} \sum{i=1}^n (x_{i2} - \bar{x}_2)^2 }, \quad b_1 = \bar{y} - \bar{x}_2 b_2. $$

Note

$$ b_2 \stackrel{p} \to \frac{\mathrm{Cov} (x_2, y)}{\mathrm{Var} (x_2)} $$


Copyright ©2017 by Qiang Gao