Skip to content

Latest commit

 

History

History
103 lines (85 loc) · 2.17 KB

1.2.5.md

File metadata and controls

103 lines (85 loc) · 2.17 KB

Solution to Review Question

by Qiang Gao, updated at Mar 21, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 2 The Algebra of Least Squares

...

Review Question 1.2.5 (Matrix algebra of fitted values and residuals)

Show the following:

(a) $$ \hat{\mathbf{y}} = \mathbf{P} \mathbf{y} $$, $$ \mathbf{e} = \mathbf{M} \mathbf{y} = \mathbf{M} \boldsymbol{\varepsilon} $$.

(b) $$ \mathrm{SSR} = \boldsymbol{\varepsilon}' \mathbf{M} \boldsymbol{\varepsilon} $$.

Solution

(a.1) $$ \hat{\mathbf{y}} = \mathbf{P} \mathbf{y} $$ because

$$ \begin{align} \hat{\mathbf{y}} & = \mathbf{X} \mathbf{b} && \text{(definition of $\hat{\mathbf{y}}$)} \ & = \mathbf{X} ( \mathbf{X}' \mathbf{X} )^{-1} \mathbf{X}' \mathbf{y} && \text{(definition of $\mathbf{b}$)} \ & = \mathbf{P} \mathbf{y}. && \text{(definition of $\mathbf{P}$)} \end{align} $$

(a.2) $$ \mathbf{e} = \mathbf{M} \mathbf{y} = \mathbf{M} \boldsymbol{\varepsilon} $$ because

$$ \begin{align} \mathbf{e} & = \mathbf{y} - \mathbf{X} \mathbf{b} && \text{(definition of $\mathbf{e}$)} \ & = \mathbf{y} - \hat{\mathbf{y}} && \text{(definition of $\hat{\mathbf{y}}$)} \ & = \mathbf{y} - \mathbf{P} \mathbf{y} && (\hat{\mathbf{y}} = \mathbf{P} \mathbf{y}) \ & = (\mathbf{I} - \mathbf{P}) \mathbf{y} \ & = \mathbf{M} \mathbf{y} && \text{(definition of $\mathbf{M}$)} \ & = \mathbf{M} ( \mathbf{X} \boldsymbol{\beta} + \boldsymbol{ \varepsilon } ) && \text{(Assumption 1.1)} \ & = \mathbf{M} \mathbf{X} \boldsymbol{\beta} + \mathbf{M} \boldsymbol{\varepsilon} \ & = \mathbf{M} \boldsymbol{\varepsilon} && (\mathbf{M} \mathbf{X} = \mathbf{0}) \end{align} $$

(b) $$ \mathrm{SSR} = \boldsymbol{\varepsilon}' \mathbf{M} \boldsymbol{\varepsilon} $$ because

$$ \begin{align} \mathrm{SSR} & = \mathbf{e}' \mathbf{e} && \text{(definition of $\mathrm{SSR}$)} \ & = (\mathbf{M} \boldsymbol{\varepsilon})' (\mathbf{M} \boldsymbol{\varepsilon}) && ( \mathbf{e} = \mathbf{M} \boldsymbol{\varepsilon} ) \ & = \boldsymbol{\varepsilon}' \mathbf{M} \mathbf{M} \boldsymbol{\varepsilon} \ & = \boldsymbol{\varepsilon}' \mathbf{M} \boldsymbol{\varepsilon}. && \text{($\mathbf{M}$ is idempotent)} \end{align} $$


Copyright ©2017 by Qiang Gao