Skip to content

Latest commit

 

History

History
43 lines (31 loc) · 1.23 KB

1.3.6.md

File metadata and controls

43 lines (31 loc) · 1.23 KB

Solution to Review Question

by Qiang Gao, updated at May 8, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 3 Finite-Sample Properties of OLS

...

Review Question 1.3.6

Prove part (d) of Proposition 1.1, under Assumptions 1.1—1.4, $$ \mathrm{Cov} ( \mathbf{b}, \mathbf{e} \mid \mathbf{X} ) = \mathbf{0} $$, where $$ \mathbf{e} \equiv \mathbf{y} - \mathbf{X} \mathbf{b} $$.

Solution

By definition of covariance,

$$ \begin{align} \mathrm{Cov} ( \mathbf{b}, \mathbf{e} \mid \mathbf{X} ) & = \mathrm{E} { [ \mathbf{b} - \mathrm{E} ( \mathbf{b} \mid \mathbf{X} ) ][ \mathbf{e} - \mathrm{E} ( \mathbf{e} \mid \mathbf{X} ) ]' \mid \mathbf{X} } \ & = \mathrm{E} { [ \mathbf{A} \boldsymbol{ \varepsilon } ][ \mathbf{M} \boldsymbol{ \varepsilon } ]' \mid \mathbf{X} } && ( \mathbf{A} \equiv (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}', \mathbf{M} \equiv \mathbf{I} - \mathbf{X} ( \mathbf{X}' \mathbf{X} )^{-1} \mathbf{X}' ) \ & = \mathbf{A} \mathrm{E} ( \boldsymbol{ \varepsilon } \boldsymbol{\varepsilon}' \mid \mathbf{X} ) \mathbf{M}' \ & = \sigma^2 \mathbf{A} \mathbf{M}' && ( \mathbf{M} \mathbf{X} = \mathbf{0} ) \ & = \mathbf{0}. \end{align} $$


Copyright ©2017 by Qiang Gao