Skip to content

Latest commit

 

History

History
76 lines (54 loc) · 2.98 KB

1.5.4.md

File metadata and controls

76 lines (54 loc) · 2.98 KB

Solution to Review Question

by Qiang Gao, updated at May 15, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 5 Relation to Maximum Likelihood

...

Review Question 1.5.4 (Information matrix equality for classical regression model)

Verify the information matrix equality

$$ \mathbf{I} ( \boldsymbol{ \theta } ) =

  • \mathrm{E} \left[ \frac{ \partial^2 \log L( \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } , \partial \tilde{ \boldsymbol{ \theta } }' } \right] \tag{1.5.11} $$

for the linear regression model.

Solution

Comment: The information matrix equality is an identity, it is not specific to the linear regression model.

We begin with the identity

$$ 1 = \oint_{ \Omega } f( \mathbf{z} ; \boldsymbol{ \theta } ) , d \mathbf{z}. $$

Taking derivative with respect to $$ \boldsymbol{ \theta } $$ and interchange differentiation and integration,

$$ 0 = \oint_{\Omega} \frac{ \partial f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } } , d \mathbf{z} = \oint_{\Omega} \frac{ \partial \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } } f( \mathbf{z}; \boldsymbol{ \theta } ) , d \mathbf{z}. $$

Taking derivative with respect to $$ \boldsymbol{ \theta }' $$ and interchange differentiation and integration,

$$ \begin{align} 0 & = \oint_{\Omega} \frac{ \partial^2 \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } , \partial \tilde{ \boldsymbol{ \theta } }' } f( \mathbf{z}; \boldsymbol{ \theta } ) , d \mathbf{z} + \oint_{\Omega} \frac{ \partial \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } } \frac{ \partial f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } }' } , d \mathbf{z} \ & = \oint_{\Omega} \frac{ \partial^2 \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } , \partial \tilde{ \boldsymbol{ \theta } }' } f( \mathbf{z}; \boldsymbol{ \theta } ) , d \mathbf{z} + \oint_{\Omega} \frac{ \partial \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } } \frac{ \partial \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } }' } f( \mathbf{z}; \boldsymbol{ \theta } ) , d \mathbf{z}. \tag{1} \end{align} $$

Because

$$ \begin{align} \mathbf{I} ( \boldsymbol{ \theta } ) & \equiv \mathrm{E} [ \mathbf{s} ( \boldsymbol{ \theta } ) \mathbf{s} ( \boldsymbol{ \theta } )' ] \tag{1.5.10} \ & = \oint_{\Omega} \frac{ \partial \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } } } \frac{ \partial \log f( \mathbf{z}; \boldsymbol{ \theta } ) }{ \partial \tilde{ \boldsymbol{ \theta } }' } f( \mathbf{z}; \boldsymbol{ \theta } ) , d \mathbf{z}, \end{align} $$

and $$ L( \boldsymbol{ \theta } ) \equiv f( \mathbf{z}; \boldsymbol{ \theta } ) $$, substituting into (1) and rearranging terms, we get (1.5.11).


Copyright ©2017 by Qiang Gao