Skip to content

Latest commit

 

History

History
53 lines (34 loc) · 1.69 KB

1.6.2.md

File metadata and controls

53 lines (34 loc) · 1.69 KB

Solution to Review Question

by Qiang Gao, updated at May 15, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 6 Generalized Least Squares (GLS)

...

Review Question 1.6.2 (Generalized $$ SSR $$)

Show that $$ \hat{ \boldsymbol{ \beta } }_{ \mathrm{GLS} } $$ minimizes $$ ( \mathbf{y} - \mathbf{X} \tilde{ \boldsymbol{ \beta } } )' \mathbf{V}^{-1} ( \mathbf{y} - \mathbf{X} \tilde{ \boldsymbol{ \beta } } ) $$.

Solution

Note that for symmetric $$ \mathbf{V} $$, its inverse $$ \mathbf{V}^{-1} $$ is also symmetric.

The objective function is

$$ \begin{align} & ( \mathbf{y} - \mathbf{X} \tilde{ \boldsymbol{ \beta } } )' \mathbf{V}^{-1} ( \mathbf{y} - \mathbf{X} \tilde{ \boldsymbol{ \beta } } ) \ = & ( \mathbf{y} - \mathbf{X} \tilde{ \boldsymbol{ \beta } } )' ( \mathbf{V}^{-1} \mathbf{y} - \mathbf{V}^{-1} \mathbf{X} \tilde{ \boldsymbol{ \beta } } ) \ = & \mathbf{y}' \mathbf{V}^{-1} \mathbf{y} - 2 \cdot \mathbf{y}' \mathbf{V}^{-1} \mathbf{X} \tilde{ \boldsymbol{ \beta } } + \tilde{ \boldsymbol{ \beta } }' \mathbf{X}' \mathbf{V}^{-1} \mathbf{X} \tilde{ \boldsymbol{ \beta } }. \end{align} $$

Taking derivative with respect to $$ \tilde{ \boldsymbol{ \beta } } $$ leads to the first-order condition

$$

  • 2 \cdot \mathbf{X}' \mathbf{V}^{-1} \mathbf{y} + 2 \cdot \mathbf{X}' \mathbf{V}^{-1} \mathbf{X} \tilde{ \boldsymbol{ \beta } } = \mathbf{0}, $$

and it reduces to

$$ \mathbf{X}' \mathbf{V}^{-1} \mathbf{X} \tilde{ \boldsymbol{ \beta } } = \mathbf{X}' \mathbf{V}^{-1} \mathbf{y}, $$

which solves that

$$ \tilde{ \boldsymbol{ \beta } }_{ \mathrm{GLS} } = ( \mathbf{X}' \mathbf{V}^{-1} \mathbf{X} )^{-1} \mathbf{X}' \mathbf{V}^{-1} \mathbf{y}. $$


Copyright ©2017 by Qiang Gao