Skip to content

Latest commit

 

History

History
80 lines (63 loc) · 1.37 KB

1.1.6.md

File metadata and controls

80 lines (63 loc) · 1.37 KB

Solution to Review Question

by Qiang Gao, updated at Mar 13, 2017


Chapter 1 Finite-Sample Properties of OLS

Section 1 The Classical Linear Regression Model

...

Review Question 1.1.6 (An exercise in conditional and unconditional expectations)

Show that Assumptions 1.2 and 1.4 imply

$$ \begin{align} \mathrm{Var} ( \varepsilon_i ) & = \sigma^2 && (i = 1, 2, \ldots, n) \\ \text{and} \qquad \mathrm{Cov} ( \varepsilon_i, \varepsilon_j ) & = 0 && (i \neq j; i, j = 1, 2, \ldots, n). \tag{$\ast$} \end{align} $$

Solution

Strict exogeneity implies $$ \mathrm{E} (\varepsilon_i) = 0 $$. So $$ (\ast) $$ is equivalent to

$$ \begin{align} \mathrm{E} ( \varepsilon_i^2 ) & = \sigma^2 && (i = 1, 2, \ldots, n) \\ \text{and} \qquad \mathrm{E} ( \varepsilon_i \varepsilon_j ) & = 0 && (i \neq j; i, j = 1, 2, \ldots, n). \end{align} $$

(1) For $$i = 1, 2, \ldots, n$$,

$$ \begin{align} \mathrm{E} (\varepsilon_i^2) & = \mathrm{E} [\mathrm{E} (\varepsilon_i^2 \mid \mathbf{X})] && \text{(law of total expectations)} \ & = \sigma^2. && \text{(Assumption 1.4)} \end{align} $$

(2) For $$i \neq j; i, j = 1, 2, \ldots, n$$,

$$ \begin{align} \mathrm{E} (\varepsilon_i \varepsilon_j) & = \mathrm{E} [ \mathrm{E} (\varepsilon_i \varepsilon_j \mid \mathbf{X}) ] && \text{(law of total expectations)} \ & = 0. && \text{(Assumption 1.4)} \end{align} $$


Copyright ©2017 by Qiang Gao