Skip to content

Latest commit

 

History

History
190 lines (167 loc) · 3.46 KB

1.2.4.md

File metadata and controls

190 lines (167 loc) · 3.46 KB

Solution to Review Question

by Qiang Gao, updated at Apr 2, 2018


Chapter 1 Finite-Sample Properties of OLS

Section 2 The Algebra of Least Squares

...

Review Question 1.2.4

Prove that

$$ \begin{align} & \text{ Both $ \mathbf{P} $ and $ \mathbf{M} $ are symmetric and idempotent, } \tag{1.2.9} \ & \mathbf{P} \mathbf{X} = \mathbf{X} \quad \text{(hence the term projection matrix),} \tag{1.2.10} \ & \mathbf{M} \mathbf{X} = \mathbf{0} \quad \text{(hence the term annihilator).}\tag{1.2.11} \end{align} $$

Solution

(1) $$ \mathbf{P} $$ is symmetric because

$$ \begin{align} \mathbf{P}^\intercal & = [\mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal]^\intercal && \text{(definition (1.2.7))} \ & = (\mathbf{X}^\intercal)^\intercal [(\mathbf{X}^\intercal \mathbf{X})^{-1}]^\intercal \mathbf{X}^\intercal && ((\mathbf{A} \mathbf{B})^\intercal = \mathbf{B}^\intercal \mathbf{A}^\intercal) \ & = ( \mathbf{X}^\intercal)^\intercal [(\mathbf{X}^\intercal \mathbf{X})^\intercal]^{-1} \mathbf{X}^\intercal && ((\mathbf{A}^{-1})^\intercal = (\mathbf{A}^\intercal)^{-1}) \ & = \mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal && ((\mathbf{A}^\intercal)^\intercal = \mathbf{A}) \ & = \mathbf{P}. && \text{(definition (1.2.7))} \end{align} $$

(2) $$ \mathbf{M} $$ is symmetric because

$$ \begin{align} \mathbf{M}^\intercal & = ( \mathbf{I} - \mathbf{P} )^\intercal && \text{(definition (1.2.8))} \ & = \mathbf{I}^\intercal - \mathbf{P}^\intercal && ((\mathbf{A} - \mathbf{B})^\intercal = \mathbf{A}^\intercal - \mathbf{B}^\intercal) \ & = \mathbf{I} - \mathbf{P} && \text{($\mathbf{I}$ and $\mathbf{P}$ are symmetric)} \ & = \mathbf{M}. && \text{(definition (1.2.8))} \end{align} $$

(3) $$ \mathbf{P} $$ is idempotent because

$$ \begin{align} \mathbf{P}^2 & = (\mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal) \cdot (\mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal) && \text{(definition (1.2.7))} \ & = \mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} (\mathbf{X}^\intercal \mathbf{X}) (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal && ((\mathbf{A} \mathbf{B}) \mathbf{C} = \mathbf{A} (\mathbf{B} \mathbf{C})) \ & = \mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal && (\mathbf{A}^{-1} \mathbf{A} = \mathbf{I}) \ & = \mathbf{P}. && \text{(definition (1.2.7))} \end{align} $$

(4) $$ \mathbf{M} $$ is idempotent because

$$ \begin{align} \mathbf{M}^2 & = (\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P}) && \text{(definition (1.2.8))} \ & = \mathbf{I} - \mathbf{P} - \mathbf{P} + \mathbf{P}^2 \ & = \mathbf{I} - \mathbf{P} - \mathbf{P} + \mathbf{P} && \text{($\mathbf{P}$ is idempotent)} \ & = \mathbf{I} - \mathbf{P} \ & = \mathbf{M}. && \text{(definition (1.2.8))} \end{align} $$

(5) $$ \mathbf{P} \mathbf{X} = \mathbf{X} $$ because

$$ \begin{align} \mathbf{P} \mathbf{X} & = \mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal \cdot \mathbf{X} && \text{(definition (1.2.7))} \ & = \mathbf{X} (\mathbf{X}^\intercal \mathbf{X})^{-1} (\mathbf{X}^\intercal \mathbf{X}) \ & = \mathbf{X}. \end{align} $$

(6) $$ \mathbf{M} \mathbf{X} = \mathbf{0} $$ because

$$ \begin{align} \mathbf{M} \mathbf{X} & = ( \mathbf{I} - \mathbf{P} ) \mathbf{X} && \text{(definition (1.2.8))} \ & = \mathbf{X} - \mathbf{P} \mathbf{X} \ & = \mathbf{X} - \mathbf{X} && ( \mathbf{P} \mathbf{X} = \mathbf{X} ) \ & = \mathbf{0}. \end{align} $$


Copyright ©2018 by Qiang Gao