Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code cleanup and collection updates #45

Merged
merged 7 commits into from
Oct 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
149 changes: 81 additions & 68 deletions hydrafloods/MODIS_DNNS.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,106 +5,119 @@
import math
import matplotlib.pyplot as pl


def perm_water_mask():
return ee.Image("MODIS/MOD44W/MOD44W_005_2000_02_24").select(['water_mask'], ['b1'])
return ee.Image("MODIS/MOD44W/MOD44W_005_2000_02_24").select(["water_mask"], ["b1"])


def DEM():
return ee.Image('CGIAR/SRTM90_V4')
#ALOS DEM
#ee.Image('JAXA/ALOS/AW3D30_V1_1')
#SRTM DEM
#ee.Image('USGS/SRTMGL1_003')


def GEE_classifier(img, name_classifier, arguments={}):
arguments = {
'training_image' : perm_water_mask(),
'training_band' : "b1",
'training_region' : img
}
c_arguments = {
'subsampling' : 0.1,
'max_classification': 2,
'classifier_mode' : 'classification',
'name_classifier' : name_classifier
}
arguments.update(c_arguments)
classes1 = img.trainClassifier(**arguments)
classes2 = classify(classes1).select(['classification'], ['b1'])
return classes2;
return ee.Image("CGIAR/SRTM90_V4")


# ALOS DEM
# ee.Image('JAXA/ALOS/AW3D30_V1_1')
# SRTM DEM
# ee.Image('USGS/SRTMGL1_003')


# def GEE_classifier(img, name_classifier, arguments={}):
# arguments = {
# "training_image": perm_water_mask(),
# "training_band": "b1",
# "training_region": img,
# }
# c_arguments = {
# "subsampling": 0.1,
# "max_classification": 2,
# "classifier_mode": "classification",
# "name_classifier": name_classifier,
# }
# arguments.update(c_arguments)
# classes1 = img.trainClassifier(**arguments)
# classes2 = classify(classes1).select(["classification"], ["b1"])
# return classes2


def dnns(img):

kernel_scale = 40
VIIRS_ave_scale = 500

k1 = ee.Kernel.square(kernel_scale, 'pixels', False)

composite = img['b1'].addBands(img['b2']).addBands(img['b6'])

classes = GEE_classifier(img, 'Pegasos', {'classifier_mode' : 'probability'})
VIIRS_ave_scale = 500

k1 = ee.Kernel.square(kernel_scale, "pixels", False)

composite = img["b1"].addBands(img["b2"]).addBands(img["b6"])

# classes = GEE_classifier(img, "Pegasos", {"classifier_mode": "probability"})
classes = ee.Image([0.5, 0.5])
water = classes.gte(0.9)
land = classes.lte(0.1)
land = classes.lte(0.1)
mix = water.Not().And(land.Not())
ave_water = water.mask(water).multiply(composite)
ave_water_img = ee.Image([ave_water['b1'], ave_water['b2'], ave_water['b6']])
ave_water_img = ee.Image([ave_water["b1"], ave_water["b2"], ave_water["b6"]])

N_nmin_water = 1
N_water = water.convolve(k1)

water_rf = water.multiply(composite).convolve(k1).multiply(N_water.gte(N_nmin_water)).divide(N_water)

water_rf = (
water.multiply(composite)
.convolve(k1)
.multiply(N_water.gte(N_nmin_water))
.divide(N_water)
)
water_rf = water_rf.add(ave_water_img.multiply(water_rf.Not()))

ave_land = composite.mask(land)
ave_land_img = ee.Image([ave_land['b1'], ave_land['b2'], ave_land['b6']])
# Constraints
R1 = img['b1'].divide(img['b6'])
R2 = img['b2'].divide(img['b6'])
R3 = R1.subtract(water_rf.select('b1').divide(img['b6']) )
R4 = R2.subtract(water_rf.select('b2').divide(img['b6']) )
NR1 = R1.neighborhoodToBands(k1)

ave_land_img = ee.Image([ave_land["b1"], ave_land["b2"], ave_land["b6"]])

# Constraints
R1 = img["b1"].divide(img["b6"])
R2 = img["b2"].divide(img["b6"])
R3 = R1.subtract(water_rf.select("b1").divide(img["b6"]))
R4 = R2.subtract(water_rf.select("b2").divide(img["b6"]))

NR1 = R1.neighborhoodToBands(k1)
NR2 = R2.neighborhoodToBands(k1)
NI1 = img['b1'].neighborhoodToBands(k1)
NI2 = img['b2'].neighborhoodToBands(k1)
NI3 = img['b6'].neighborhoodToBands(k1)


NI1 = img["b1"].neighborhoodToBands(k1)
NI2 = img["b2"].neighborhoodToBands(k1)
NI3 = img["b6"].neighborhoodToBands(k1)

M1 = (NR1.gt(R3)).And(NR1.lt(R1))
M2 = (NR2.gt(R4)).And(NR2.lt(R2))
nLP = M1.And(M2)

NnLP = nLP.reduce(ee.Reducer.sum())
ave_nI1 = NI1.multiply(nLP).reduce(ee.Reducer.sum()).divide(numnLP)
ave_nI2 = NI2.multiply(nLP).reduce(ee.Reducer.sum()).divide(numnLP)
ave_nI1 = NI1.multiply(nLP).reduce(ee.Reducer.sum()).divide(NnLP)
ave_nI2 = NI2.multiply(nLP).reduce(ee.Reducer.sum()).divide(NnLP)
ave_nI3 = NI3.multiply(nLP).reduce(ee.Reducer.sum()).divide(NnLP)

N_nmin_land = 1
ave_land = ave_nI1.addBands(ave_nI2).addBands(ave_nI3)
ave_land = ave_land.multiply(NnLP.gte(N_nmin_land)).add(ave_land_img.multiply(NnLP.lt(N_nmin_land)) )
ave_land = ave_land.multiply(NnLP.gte(N_nmin_land)).add(
ave_land_img.multiply(NnLP.lt(N_nmin_land))
)

ave_landI3 = ave_land.select('b6')
f_water = (ave_landI3.subtract(img['b6'])).divide(ave_landI3.subtract(water_rf.select('b6'))).clamp(0, 1)
ave_landI3 = ave_land.select("b6")
f_water = (
(ave_landI3.subtract(img["b6"]))
.divide(ave_landI3.subtract(water_rf.select("b6")))
.clamp(0, 1)
)
f_water = f_water.add(water).subtract(land).clamp(0, 1)

return f_water


def DEM_downscale(img, f_water):

MODIS_Pixel_meters = 500
DEM_d = img.DEM()

water_present = f_water.gt(0.0)

h_min = DEM_d.mask(f_water).focal_min(MODIS_Pixel_meters, 'square', 'meters')
h_max = DEM_d.mask(f_water).focal_max(MODIS_Pixel_meters, 'square', 'meters')


water_high = h_min.add(h_max.subtract(h_min).multiply(f_water))
water_high = water_high.multiply(f_water.lt(1.0)).multiply(f_water.gt(0.0))
return f_water.eq(1.0).select(['elevation'], ['b1'])
h_min = DEM_d.mask(f_water).focal_min(MODIS_Pixel_meters, "square", "meters")
h_max = DEM_d.mask(f_water).focal_max(MODIS_Pixel_meters, "square", "meters")

water_high = h_min.add(h_max.subtract(h_min).multiply(f_water))
water_high = water_high.multiply(f_water.lt(1.0)).multiply(f_water.gt(0.0))
return f_water.eq(1.0).select(["elevation"], ["b1"])
151 changes: 80 additions & 71 deletions hydrafloods/VIIRS_DNNS.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@

# coding: utf-8 VIIRS DNNS
# coding: utf-8 VIIRS DNNS

import ee
import numpy as np
Expand All @@ -8,107 +7,117 @@


def perm_water_mask():
return ee.Image("MODIS/MOD44W/MOD44W_005_2000_02_24").select(['water_mask'], ['b1'])
return ee.Image("MODIS/MOD44W/MOD44W_005_2000_02_24").select(["water_mask"], ["b1"])


def DEM():
return ee.Image('CGIAR/SRTM90_V4')
#ALOS DEM
#ee.Image('JAXA/ALOS/AW3D30_V1_1')
#SRTM DEM
#ee.Image('USGS/SRTMGL1_003')


def GEE_classifier(img, name_classifier, arguments={}):
arguments = {
'training_image' : perm_water_mask(),
'training_band' : "b1",
'training_region' : img
}
c_arguments = {
'subsampling' : 0.1,
'max_classification': 2,
'classifier_mode' : 'classification',
'name_classifier' : name_classifier
}
arguments.update(c_arguments)
classes1 = img.trainClassifier(**arguments)
classes2 = classify(classes1).select(['classification'], ['b1'])
return classes2;
return ee.Image("CGIAR/SRTM90_V4")


# ALOS DEM
# ee.Image('JAXA/ALOS/AW3D30_V1_1')
# SRTM DEM
# ee.Image('USGS/SRTMGL1_003')


# def GEE_classifier(img, name_classifier, arguments={}):
# arguments = {
# "training_image": perm_water_mask(),
# "training_band": "b1",
# "training_region": img,
# }
# c_arguments = {
# "subsampling": 0.1,
# "max_classification": 2,
# "classifier_mode": "classification",
# "name_classifier": name_classifier,
# }
# arguments.update(c_arguments)
# classes1 = img.trainClassifier(**arguments)
# classes2 = classify(classes1).select(["classification"], ["b1"])
# return classes2


def dnns(img):

kernel_scale = 40
VIIRS_ave_scale = 500

k1 = ee.Kernel.square(kernel_scale, 'pixels', False)

composite = img['I1'].addBands(img['I2']).addBands(img['I3'])

classes = GEE_classifier(img, 'Pegasos', {'classifier_mode' : 'probability'})
VIIRS_ave_scale = 500

k1 = ee.Kernel.square(kernel_scale, "pixels", False)

composite = img["I1"].addBands(img["I2"]).addBands(img["I3"])

# classes = GEE_classifier(img, "Pegasos", {"classifier_mode": "probability"})
classes = ee.Image([0.5, 0.5])
water = classes.gte(0.9)
land = classes.lte(0.1)
land = classes.lte(0.1)
mix = water.Not().And(land.Not())
ave_water = water.mask(water).multiply(composite)
ave_water_img = ee.Image([ave_water['I1'], ave_water['I2'], ave_water['I3']])
ave_water_img = ee.Image([ave_water["I1"], ave_water["I2"], ave_water["I3"]])

N_nmin_water = 1
N_water = water.convolve(k1)

water_rf = water.multiply(composite).convolve(k1).multiply(N_water.gte(N_nmin_water)).divide(N_water)

water_rf = (
water.multiply(composite)
.convolve(k1)
.multiply(N_water.gte(N_nmin_water))
.divide(N_water)
)
water_rf = water_rf.add(ave_water_img.multiply(water_rf.Not()))

ave_land = composite.mask(land)
ave_land_img = ee.Image([ave_land['I1'], ave_land['I2'], ave_land['I3']])
# Constraints
R1 = img['I1'].divide(img['I3'])
R2 = img['I2'].divide(img['I3'])
R3 = R1.subtract(water_rf.select('I1').divide(img['I3']) )
R4 = R2.subtract(water_rf.select('I2').divide(img['I3']) )
NR1 = R1.neighborhoodToBands(k1)

ave_land_img = ee.Image([ave_land["I1"], ave_land["I2"], ave_land["I3"]])

# Constraints
R1 = img["I1"].divide(img["I3"])
R2 = img["I2"].divide(img["I3"])
R3 = R1.subtract(water_rf.select("I1").divide(img["I3"]))
R4 = R2.subtract(water_rf.select("I2").divide(img["I3"]))

NR1 = R1.neighborhoodToBands(k1)
NR2 = R2.neighborhoodToBands(k1)
NI1 = img['I1'].neighborhoodToBands(k1)
NI2 = img['I2'].neighborhoodToBands(k1)
NI3 = img['I3'].neighborhoodToBands(k1)


NI1 = img["I1"].neighborhoodToBands(k1)
NI2 = img["I2"].neighborhoodToBands(k1)
NI3 = img["I3"].neighborhoodToBands(k1)

M1 = (NR1.gt(R3)).And(NR1.lt(R1))
M2 = (NR2.gt(R4)).And(NR2.lt(R2))
nLP = M1.And(M2)

NnLP = nLP.reduce(ee.Reducer.sum())
ave_nI1 = NI1.multiply(nLP).reduce(ee.Reducer.sum()).divide(numnLP)
ave_nI2 = NI2.multiply(nLP).reduce(ee.Reducer.sum()).divide(numnLP)
ave_nI1 = NI1.multiply(nLP).reduce(ee.Reducer.sum()).divide(NnLP)
ave_nI2 = NI2.multiply(nLP).reduce(ee.Reducer.sum()).divide(NnLP)
ave_nI3 = NI3.multiply(nLP).reduce(ee.Reducer.sum()).divide(NnLP)

N_nmin_land = 1
ave_land = ave_nI1.addBands(ave_nI2).addBands(ave_nI3)
ave_land = ave_land.multiply(NnLP.gte(N_nmin_land)).add(ave_land_img.multiply(NnLP.lt(N_nmin_land)) )

ave_landI3 = ave_land.select('I3')
f_water = (ave_landI3.subtract(img['I3'])).divide(ave_landI3.subtract(water_rf.select('I3'))).clamp(0, 1)
ave_land = ave_land.multiply(NnLP.gte(N_nmin_land)).add(
ave_land_img.multiply(NnLP.lt(N_nmin_land))
)

ave_landI3 = ave_land.select("I3")
f_water = (
(ave_landI3.subtract(img["I3"]))
.divide(ave_landI3.subtract(water_rf.select("I3")))
.clamp(0, 1)
)
f_water = f_water.add(water).subtract(land).clamp(0, 1)

return f_water


def DEM_downscale(img, f_water):

VIIRS_Pixel_meters = 500
DEM_d = img.DEM()

water_present = f_water.gt(0.0)

h_min = DEM_d.mask(f_water).focal_min(VIIRS_Pixel_meters, 'square', 'meters')
h_max = DEM_d.mask(f_water).focal_max(VIIRS_Pixel_meters, 'square', 'meters')


water_high = h_min.add(h_max.subtract(h_min).multiply(f_water))
water_high = water_high.multiply(f_water.lt(1.0)).multiply(f_water.gt(0.0))
return f_water.eq(1.0).select(['elevation'], ['I1'])
h_min = DEM_d.mask(f_water).focal_min(VIIRS_Pixel_meters, "square", "meters")
h_max = DEM_d.mask(f_water).focal_max(VIIRS_Pixel_meters, "square", "meters")

water_high = h_min.add(h_max.subtract(h_min).multiply(f_water))
water_high = water_high.multiply(f_water.lt(1.0)).multiply(f_water.gt(0.0))
return f_water.eq(1.0).select(["elevation"], ["I1"])
4 changes: 3 additions & 1 deletion hydrafloods/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@
from hydrafloods.floods import *
from hydrafloods import fetch, utils

from hydrafloods import fusion

# from hydrafloods import *

__version__ = "2021.11.10"
__version__ = "2023.10.14"
Loading