Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added GNO with test and tutorial #231

Draft
wants to merge 2 commits into
base: 0.2
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/testing_pr.yml
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ jobs:
run: |
python3 -m pip install --upgrade pip
python3 -m pip install .[test]
python3 -m pip install torch_cluster -f https://data.pyg.org/whl/torch-2.2.0+cpu.html

- name: Test with pytest
run: |
Expand Down
2 changes: 2 additions & 0 deletions pina/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,11 @@
'DeepONet',
'MIONet',
'FNO',
'GNO'
]

from .feed_forward import FeedForward, ResidualFeedForward
from .multi_feed_forward import MultiFeedForward
from .deeponet import DeepONet, MIONet
from .fno import FNO
from .gno import GNO
65 changes: 65 additions & 0 deletions pina/model/gno.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
import torch
import torch.nn as nn
from torch_geometric.nn import pool
from . import FeedForward

class GNO(nn.Module):
def __init__(self,
input_features,
output_features,
points,
radius=0.05,
inner_size=20,
n_layers=2,
func=nn.Tanh,
):

super().__init__()
self.input_features=input_features
self.output_features=output_features
self.num_points=points.shape[0]
self.points_size=points.shape[1]
self.nn=FeedForward(2*self.points_size+2*self.input_features, output_features*output_features, inner_size, n_layers, func)
self.points=points
self.neigh=pool.radius(points, points, radius)
self.linear=nn.Linear(self.input_features,self.output_features,bias=False)

def forward(self, batch):
points_x=self.points[self.neigh[1]].unsqueeze(0).repeat(batch.shape[0],1,1)
points_y=self.points[self.neigh[0]].unsqueeze(0).repeat(batch.shape[0],1,1)
batch_x=batch[:,self.neigh[1],:]
batch_y=batch[:,self.neigh[0],:]
new_batch=torch.concatenate((points_x,points_y,batch_x,batch_y),dim=2)
new_batch=self.nn(new_batch).reshape(batch.shape[0],-1,self.output_features,self.output_features)
new_batch=torch.matmul(new_batch,batch_y.unsqueeze(-1)).squeeze(-1)

tmp_list=self.neigh[0].unsqueeze(0).unsqueeze(-1).repeat(batch.shape[0],1,self.output_features)
tmp_array=torch.zeros(batch.shape[0],batch.shape[1],self.output_features,requires_grad=True)
lin_part=self.linear(batch)
k_part=torch.scatter_reduce(tmp_array,1,tmp_list,new_batch,reduce='mean')
new_batch=lin_part+k_part
return new_batch





def forward_eval(self,batch,points):
neigh=pool.radius(points, points, 0.05)
points_x=points[neigh[1]].unsqueeze(0).repeat(batch.shape[0],1,1)
points_y=points[neigh[0]].unsqueeze(0).repeat(batch.shape[0],1,1)
batch_x=batch[:,neigh[1],:]
batch_y=batch[:,neigh[0],:]
new_batch=torch.concatenate((points_x,points_y,batch_x,batch_y),dim=2)
new_batch=self.nn(new_batch).reshape(batch.shape[0],-1,self.output_features,self.output_features)
new_batch=torch.matmul(new_batch,batch_y.unsqueeze(-1)).squeeze(-1)
tmp_list=neigh[0].unsqueeze(0).unsqueeze(-1).repeat(batch.shape[0],1,self.output_features)
tmp_array=torch.zeros(batch.shape[0],batch.shape[1],self.output_features,requires_grad=True)
lin_part=self.linear(batch)
k_part=torch.scatter_reduce(tmp_array,1,tmp_list,new_batch,reduce='mean')
new_batch=lin_part+k_part
return new_batch




2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
KEYWORDS = 'physics-informed neural-network'

REQUIRED = [
'numpy', 'matplotlib', 'torch', 'lightning', 'pytorch_lightning'
'numpy', 'matplotlib', 'torch', 'lightning', 'pytorch_lightning','torch_geometric'
]

EXTRAS = {
Expand Down
28 changes: 28 additions & 0 deletions tests/test_model/test_gno.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import torch
from pina.model import GNO

output_channels = 5
batch_size = 15


def test_constructor():
input_channels = 1
output_channels = 1
#minimuum constructor
GNO(input_channels, output_channels, torch.rand(10000, 2))

#all constructor
GNO(input_channels, output_channels, torch.rand(100, 2),radius=0.5,inner_size=5,n_layers=5,func=torch.nn.ReLU)



def test_forward():
input_channels = 1
output_channels = 1
input_ = torch.rand(batch_size, 1000, input_channels)
points=torch.rand(1000,2)
gno = GNO(input_channels, output_channels, points)
out = gno(input_)
assert out.shape == torch.Size([batch_size, points.shape[0], output_channels])


85 changes: 85 additions & 0 deletions tutorials/tutorial_dev_9/tutorial_dev_9.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
import torch
from time import time
from pina.model import GNO
from pina import Condition,LabelTensor
from pina.problem import AbstractProblem
from pina.solvers import SupervisedSolver
from pina.trainer import Trainer
from pina.loss import LpLoss

#Data generation

torch.manual_seed(0)

def sample_unit_circle(num_points):
radius=torch.rand(num_points,1)
angle=torch.rand(num_points,1)*2*torch.pi
x=radius*torch.cos(angle)
y=radius*torch.sin(angle)
data=torch.cat((x,y),dim=1)
return data

#sin(a*x+b*y)
def compute_input(data,theta):
data=data.reshape(1,-1,2)
z=torch.sin(theta[:,:,0]*data[:,:,0]+theta[:,:,1]*data[:,:,1])
return z

#1+convolution of sin(a*x+b*y) with sin(x) over [0,2pi]x[0,2pi ]
def compute_output(data,theta):
data=data.reshape(1,-1,2)
z=1-4*torch.sin(torch.pi*theta[:,:,0])*torch.sin(torch.pi*theta[:,:,1])*torch.cos(theta[:,:,0]*(torch.pi*data[:,:,0])+theta[:,:,1]*(torch.pi*data[:,:,1]))/((theta[:,:,0]**2-1)*theta[:,:,1])
return z



theta=1+0.01*torch.rand(300,1,2)
data_coarse=sample_unit_circle(1000)
output_coarse=compute_output(data_coarse,theta).unsqueeze(-1)
input_coarse=compute_input(data_coarse,theta).unsqueeze(-1)
data_dense=sample_unit_circle(1000)
output_dense=compute_output(data_dense,theta).unsqueeze(-1)
input_dense=compute_input(data_dense,theta).unsqueeze(-1)


model=GNO(1,1,data_coarse,inner_size=500,n_layers=4)
class GNOSolver(AbstractProblem):
input_variables=['input']
input_points=LabelTensor(input_coarse,input_variables)
output_variables=['output']
output_points=LabelTensor(output_coarse,output_variables)
conditions={"data":Condition(input_points=input_points,output_points=output_points)}

batch_size=1
problem=GNOSolver()
solver=SupervisedSolver(problem,model,optimizer_kwargs={'lr':1e-3},optimizer=torch.optim.AdamW)
trainer=Trainer(solver=solver,max_epochs=5,accelerator='cpu',enable_model_summary=False,batch_size=batch_size)
loss=LpLoss(2,relative=True)

start_time=time()
trainer.train()
end_time=time()
print(end_time-start_time)
solver.neural_net=solver.neural_net.eval()
loss=torch.nn.MSELoss()
num_batches=len(input_coarse)//batch_size
num=0
dem=0
for i in range(num_batches):
input_variables=['input']
myinput=LabelTensor(input_coarse[i].unsqueeze(0),input_variables)
tmp=model(myinput).detach().squeeze(0)
num=num+torch.linalg.norm(tmp-output_coarse[i])**2
dem=dem+torch.linalg.norm(output_coarse[i])**2
print("Training mse loss is", torch.sqrt(num/dem))


num=0
dem=0
for i in range(num_batches):
input_variables=['input']
myinput=LabelTensor(input_dense[i].unsqueeze(0),input_variables)
tmp=model.forward_eval(myinput,data_dense).detach().squeeze(0)
num=num+torch.linalg.norm(tmp-output_dense[i])**2
dem=dem+torch.linalg.norm(output_dense[i])**2
print("Super Resolution mse loss is", torch.sqrt(num/dem))
Loading