Skip to content

AWS RoboMaker is a development, deployment and simulation platform for ROS (Robot Operating System). We explore why Simulating robots on AWS is a big deal, and how you can do it too!

License

Notifications You must be signed in to change notification settings

t04glovern/aws-robomaker-docker

Repository files navigation

AWS RoboMaker Dockerized Simulations

Monitor health and operational metrics for a fleet of robots in a simulated home using AWS CloudWatch Metrics and AWS CloudWatch Logs. Streamed metrics include speed, distance to nearest obstacle, distance to current goal, robot CPU utilization, and RAM usage.

It demonstrates how to emit metrics and logs to AWS CloudWatch to monitor your robots.

Requirements

  • ROS Kinetic / ROS Melodic - Other versions may work, however they have not been tested
  • Colcon - Used for building and bundling the application.

Build

Pre-build commands

sudo apt-get update
rosdep update

Robot

sudo apt-get update
rosdep update
cd robot_ws
rosws update
rosdep install --from-paths src --ignore-src -r -y
colcon build

Simulation

cd simulation_ws
rosws update
rosdep install --from-paths src --ignore-src -r -y
colcon build

Run

The TURTLEBOT3_MODEL environment variable must be set when running the simulation application (not needed for robot application). Valid values are burger, waffle, and waffle_pi.

Launch the application with the following commands:

  • Running Robot Application on a Robot

    source robot_ws/install/local_setup.sh
    roslaunch cloudwatch_robot deploy_rotate.launch
  • Running Robot Application Elsewhere

    source robot_ws/install/local_setup.sh
    roslaunch cloudwatch_robot [command]

    There are two robot launch commands:

    • rotate.launch - The robot starts rotating
    • await_commands.launch - The robot is idle waiting movement commands, use this for teleop and navigation
  • Running Simulation Application

    export TURTLEBOT3_MODEL=waffle_pi
    source simulation_ws/install/local_setup.sh
    roslaunch cloudwatch_simulation [command]

    There are two simulation launch commands for two different worlds:

    • empty_world.launch - Empty world with some balls surrounding the turtlebot at (0,0)
    • bookstore_turtlebot_navigation.launch - A retail space where the robot navigates to random goals

Monitoring with CloudWatch Logs

Robot logs from ROS nodes are streamed into CloudWatch Logs to Log Group robomaker_cloudwatch_monitoring_example. See cloudwatch_robot/config/cloudwatch_logs_config.yaml.

Monitoring with CloudWatch Metrics

Robot metrics from ROS nodes are reported into CloudWatch Metrics robomaker_cloudwatch_monitoring_example. Metric resolution is configured at 10 seconds. See cloudwatch_robot/config/cloudwatch_metrics_config.yaml.

Operational metrics include:

  • linear speed
  • angular speed
  • distance to nearest obstacle (closest lidar scan return)
  • distance to planned goal (bookstore only, requires its navigation system)

Health metrics include CPU and RAM usage.

Using this sample with RoboMaker

You first need to install colcon-ros-bundle. Python 3.5 or above is required.

pip3 install colcon-ros-bundle

After colcon-ros-bundle is installed you need to build your robot or simulation, then you can bundle with:

# Bundling Robot Application
cd robot_ws
source install/local_setup.sh
colcon bundle

# Bundling Simulation Application
cd simulation_ws
source install/local_setup.sh
colcon bundle

This produces the artifacts robot_ws/bundle/output.tar and simulation_ws/bundle/output.tar respectively.

About

AWS RoboMaker is a development, deployment and simulation platform for ROS (Robot Operating System). We explore why Simulating robots on AWS is a big deal, and how you can do it too!

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published